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Stereoselectivity in the Ally1 Sulphenate-Sulphoxide Rearrangement 
By V. RAUTENSTRAUCH 

(Research Laboratories, Firmenick & Cie, 121 1 Geneva 8, Sm*tzerlaruE) 

Summary cis- and trans-But-2-enyl toluene-P-sulphenates 
rearrange stereoselectively, in accord with a [2, 31-sigma- 
tropic mechanism. 

I have recently observed stereoselectivity in the Wittig 
rearrangement of an allyl ether,l which can be explained in 
terms of a [2,3]-sigmatropic mechanism2 with an exo- 
transition state preferred over an endo-one. The reversible 
allyl sulphenate-sulphoxide rearrangement, discovered and 
studied by Bickart, Carson, Jakobus, Miller, and Mislow3 
can be considered as a [2,3]-sigmatropic change4 and is 
stereo~elective.~ In order to understand further the stereo- 
chemistry of [2,3]-sigmatropic changes, 1 have re-examined 
the rearrangement of but-2-enyl toluene-p-sulphenates (I). 

A four-centre transition state in the rearrangement of 
trans-but-2-enyl toluene-P-sulphenate (trans-I) to or-methyl- 
allyl toluene-p-sulphoxides (IIa) and (IIb) can be viewed 
as a toluene-p-sulphinyl radical interacting with a trans-but- 
2-enyl radical. This four-centre interaction can occur in a 
variety of geometrical arrangements.3 All such transition 

t Varian A-60, 0.65 M-solutions in CCl,. 

states can be divided into two groups which are diastereo- 
meric with respect to each other, namely exo-transition 
states, which lead to diastereomer (IIa) and endo-ones, 
which lead to diastereomer (IIb). In the rearrangement of 
cis-but-2-enyl toluene-p-sulphenate (cis-I) , exo-transition 
states lead to (IIb) and endo-ones to (Ira). 

exo-Transition states are expected to be favoured over 
endo-ones for steric reasons and possibly because of 
symmetry-controlled (anti-bonding) secondary orbital inter- 
actions. Accordingly, under conditions of kinetic control, 
(trans-I) should rearrange preferentially to diastereomer 
(IIa) and (cis-I) preferentially to (IIb). 

When lithium trans-but-2-enyl alcoholate (94% trans, 
6% cis) was treated with toluene-p-sulphenyl chloride in 
ether-hexane at -75',3 the cold mixture poured into water 
of 22", rapidly (15-20 min) worked-up a t  room tempera- 
ture (22'), and the crude product immediately examined 
by n.m.r. spectroscopy,t a ca. 76 : 24 mixture of diastereo- 
mers (11) was observed$ to be present. The same procedure, 
using lithium cis-but-2-enyl alcoholate (97% cis, 3% trans) 

f The sharp methyl doublets of (IIa) a'hd (IIb) (ref. 3) have different (ca. 0.07 p.p.m.)t chemical shifts. This difference varies with 
concentration and solvent. 
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was observed to give a ca. 22 : 78 mixture of diastereomers 

On being monitored by n.m.r.,t both mixtures were 
observed to equilibrate to a ca. 52 : 48 mixture with a rate 
constant ( k ,  + k,) of ca. 2.5 x lo4 s-1 at  +22". 

The but-2-enyl sulphenates (11) can be assumed to be 
stable a t  - 75" I 
estimate their half-lives a t  this temperature to be of the 
order of 10 s or less. The half-life of epimerisation is ca. 2 h. 
Accordingly, extrapolation of the epimerisation process 
back to the time to of pouring the cold (- 75") solutions into 
water at 22" leads to a product distribution which is close to 
being kinetically controlled. 

Since ( k ,  + K,) is strongly dependent on solvent polarity,3 
its overall value during work-up was estimated by dissolving 
the initially obtained mixture from lithium trans-but-2- 
enyl alcoholate in ether-hexane containing lithium chloride 
a t  room temperature and then working-up and aaalysing 
this mixture as before. Using the constant (ca. 1.9 x 10-4 
s-l) so obtained for extrapolation to to at  22", i t  could be 
estimated that the kinetically-controlled rearrangements 
lead to a ca. 83 : 17 mixture of diastereomers (11) in the 
trans-but-2-enyl case and to a ca. 17:83 mixture in the 
cis-but-3-enyl case. On correcting for isomer impurities in 
the but-2-enyl alcohol samples used, this corresponds to  
ca. 74 and ca. 72% stereoselectivity and to a difference of 
AF,,, and AFendo of ca. 1 kcal/mole (+22"). 

The observation? that optically active a-methylallyl 
toluene-P-sulphenate (111) rearranges to optically active 
trans-but-2-enyl toluene-P-sulphoxide (tram-IV) with at 

(11) * 

and essentially to rearrange a t  +22". 

least 37% stereoselectivity can also be explained in terms of 
preferred exo-transition states. 

R = p-MeC,H,: in each case only one enantiomer is drawn. 

Preferential formation of (tram-IV) rather than the cis- 
isomer (C~S-IV)~ implies that folding of the molecule towards 
exo- or endo-transition states occurs preferentially in such 
a way that the methyl group is in a quasi-equatorial rather 
than a quasi-axial position. This principle was also noted 
in Wittig rearrangements of a-methylallyl ethers1W and 
generally in [3,3]-sigmatropic rearrangements.' 
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